-
[ICML'24]
[paper]
[bib]
CHAI: Clustered Head Attention for Efficient LLM Inference
S. Agarwal, B. Acun, B. Homer, M. Elhoushi, Y. Lee, S. Venkataraman, D. Papailiopoulos, C.-J. Wu International Conference on Machine Learning, 2024. -
[ACL'24]
[paper]
[bib]
Layer Skip: Enabling Early Exit Inference and Self-Speculative Decoding
M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agarwal, A. Roman, A. Aly, B. Chen, C.-J. Wu Annual Meeting of the Association for Computational Linguistics, 2024. -
[ISPASS'24]
[paper]
[bib]
Generative AI Beyond LLMs: System Implications of Multi-Modal Generation
A. Golden, S. Hsia, F. Sun, B. Acun, B. Hosmer, Y. Lee, Z. DeVito, J. Johnson, G.-Y. Wei, D. Brooks, C.-J. Wu IEEE International Symposium on Performance Analysis of Systems and Software, 2024. -
[ISCA'24]
[paper]
[bib]
Exploring System-Aware Parallelization for Efficient Large-Scale Machine Learning
S. Hsia, A. Golden, B. Acun, N. Ardalani, Z. DeVito, G.Y. Wei, D. Brooks, C.-J. Wu International Symposium on Computer Architecture, 2024. -
[NeurIPS'23]
[paper]
[bib]
[code]
Dataperf: Benchmarks for Data-Centric AI Development
M. Mazumder, C. Banbury, X. Yao, B. Karlaš, W. G. Rojas, S. Diamos, G. Diamos, L. He, D. Kiela, D. Jurado, D. Kanter, R. Mosquera, J. Ciro, L. Aroyo, B. Acun, S. Eyuboglu, A. Ghorbani, E. Goodman, T. Kane, C. R. Kirkpatrick, T.-S. Kuo, J. Mueller, T. Thrush, J. Vanschoren, M. Warren, A. Williams, S. Yeung, N. Ardalani, P. Paritosh, C. Zhang, J. Zou, C.-J. Wu, C. Coleman, A. Ng, P. Mattson, V. J. Reddi Conference on Neural Information Processing Systems, 2023. -
[ASPLOS'23]
[IEEE Micro Top Picks'24 Honorable Mention]
[paper]
[bib]
MP-Rec: Hardware-Software Co-Design to Enable Multi-Path Recommendation
S. Hsia, U. Gupta, B. Acun, N. Ardalani, P. Zhong, G.Y. Wei, D. Brooks, C.J. Wu ACM International Conference on Architectural Support for Programming Languages and Operating Systems, 2023. -
[ASPLOS'23]
[IEEE Micro Top Picks'24 Honorable Mention]
[paper]
[bib]
[code]
Carbon Explorer: A Holistic Approach for Designing Carbon Aware Datacenters
B. Acun, B. Lee, F. Kazhamiaka, K. Maeng, M. Chakkaravarthy, U. Gupta, D. Brooks, C. J. Wu ACM International Conference on Architectural Support for Programming Languages and Operating Systems, 2023. -
[MLSys'22]
[paper]
[bib]
Sustainable AI: Environmental Implications, Challenges and Opportunities
C. J. Wu, R. Raghavendra, U. Gupta, B. Acun, N. Ardalani, K. Maeng, G. Chang, F. Aga, J. Huang, C. Bai, M. Gschwind, A. Gupta, M. Ott, A. Melnikov, S. Candido, D. Brooks, G. Chauhan, B. Lee, H.-H. Lee, B. Akyildiz, M. Balandat, J. Spisak, R. Jain, M. Rabbat, K. Hazelwood Conference on Machine Learning and Systems, 2022. -
[ASPLOS'22]
[paper]
[bib]
RecShard: statistical feature-based memory optimization for industry-scale neural recommendation
G. SethiB. Acun, N. Agarwal, C. Kozyrakis, C. Trippel, C. J. Wu ACM International Conference on Architectural Support for Programming Languages and Operating Systems, 2022. -
[HPCA'22]
[paper]
[bib]
SecNDP: Secure Near-Data Processing with Untrusted Memory
W. Xiong, L. Ke, D. Jankov, M. Kounavis, X. Wang, E. Northup, J. A. Yang, B. Acun, C.-J. Wu, P. T. P. Tang, G. E. Suh, X. Zhang, H.-H. Lee IEEE International Symposium on High-Performance Computer Architecture, 2022. -
[MLSys'21]
[Outstanding Paper Award]
[paper]
[bib]
[code]
TT-Rec: Tensor Train Compression for Deep Learning Recommendation Models
C. Yin, B. Acun, X. Liu, C. J. Wu Conference on Machine Learning and Systems, 2021. -
[HPCA'21]
[paper]
[bib]
Understanding Training Efficiency of Deep Learning Recommendation Models at Scale
B. Acun, M. Murphy, X. Wang, J. Nie, C. J. Wu, K. Hazelwood IEEE International Symposium on High-Performance Computer Architecture, 2021. -
[HPCA'19]
[paper]
[bib]
Power-Aware Heterogeneous Node Assembly
B. Acun, A Buyuktosunoglu, E. K. Lee, Y. Park IEEE International Symposium on High-Performance Computer Architecture, 2019. -
[IGSC'19]
[paper]
[bib]
Fine-Grained Energy Efficiency Using Per-Core DVFS with an Adaptive Runtime System
B. Acun, K. Chandrasekar, L.V. Kale International Green and Sustainable Computing Conference, 2019. -
[HiPC'17]
[paper]
[bib]
Support for Power Efficient Proactive Cooling Mechanisms
B. Acun, E. K. Lee, Y. Park, L. V. Kalé International Conference on High Performance Computing, 2017. -
[ICS'16]
[paper]
[bib]
Variation Among Processors Under Turbo Boost in HPC Systems
B. Acun , P. Miller, L. V. Kalé International Conference on Supercomputing, 2016. -
[HiPC'14]
[paper]
[bib]
Towards Realizing the Potential of Malleable Jobs
A. Gupta, B. Acun , O. Sarood, L. V. Kalé International Conference on High Performance Computing, 2014. -
[SC'14]
[paper]
[bib]
[code]
Parallel Programming with Migratable Objects: Charm++ in Practice
B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson, Y. Sun, E. Totoni, L. Wesolowski, L. V. Kalé. Supercomputing, 2014. -
[CLUSTER'13]
[paper]
[bib]
Thermal-Aware Automated Load Balancing for HPC Applications.
H. Menon, B. Acun , SG De Gonzalo, O. Sarood, L. V. Kalé IEEE International Conference on Cluster Computing, 2013. -
[ISCIS'13]
[paper]
[bib]
Topic Tracking Using Chronological Term Ranking
B. Acun, A. Başpınar, E. Oğuz, M.İ. Saraç, F. Can International Symposium on Computer and Information Sciences, 2013.